Acknowledgments

Improving Compressed Air System Performance: A Sourcebook for Industry is a cooperative effort of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) BestPractices and the Compressed Air Challenge®. EERE originally undertook this project as part of a series of sourcebook publications on industrial systems. Other topics in this series include: pump systems; fan systems; motors; process heating; and steam systems. As work on the first edition progressed, the Compressed Air Challenge® was formed, bringing together the extraordinary combined talents of compressed air system auditors, trade associations, equipment manufacturers and distributors, utilities, and government agencies in a collaborative effort to improve the performance of industrial compressed air systems. The two programs joined forces in preparing this second edition. For more information about EERE and the Compressed Air Challenge®, see Section 3: Where to Find Help.

The Compressed Air Challenge®, EERE’s BestPractice Program, Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation wish to thank the staff at the many organizations who so generously assisted in the collection of data for this sourcebook. The contributions, review, and input of the following participants in the Compressed Air Challenge® are appreciated:

Chris Beals, Air Science Engineering, Inc.
Joseph Ghislain, Ford Motor Land Services Corporation
Henry Kemp, Strategic Air Concepts
David McCulloch, The Compressed Air and Gas Institute
Wayne Perry, Kaeser Compressors, Inc.
David Prator, Atlas Copco
William Scales, Scales Air Compressor Corporation
Gary Shafer, Ingersoll-Rand Company
Dean Smith, Air Science Engineering, Inc.
Tom Taranto, ConservAIR, Inc.
H.P. Van Ormer, Air Power USA

We would also like to thank the following member companies of the Compressed Air and Gas Institute for their input:

Atlas Copco Compressors Inc.
Campbell Hausfeld
donnick hunter inc.
Gardner Denver Machinery Inc.
Hankison International
Ingersoll-Rand Company
Pneumatech/ConservAIR Inc.
Quincy Compressor Division, ENPRO
Sullair Corporation
Zeks Air Drier Corporation

Finally, a special thanks to David McCulloch, William Scales, and Gary Shafer for their extraordinary assistance.

Prepared for: Compressed Air Challenge® and the United States Department of Energy

Prepared by: Lawrence Berkeley National Laboratory
Washington, DC
Resource Dynamics Corporation
Vienna, VA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures, Tables, and Appendices</td>
<td>iii</td>
</tr>
<tr>
<td>Quick Start Guide</td>
<td>1</td>
</tr>
<tr>
<td>Section 1: Introduction to Industrial Compressed Air Systems</td>
<td>3</td>
</tr>
<tr>
<td>Components of An Industrial Compressed Air System</td>
<td>3</td>
</tr>
<tr>
<td>Uses of Compressed Air</td>
<td>15</td>
</tr>
<tr>
<td>Section 2: The Performance Opportunity Roadmap</td>
<td>17</td>
</tr>
<tr>
<td>1-Analyzing Compressed Air Needs</td>
<td>19</td>
</tr>
<tr>
<td>2-Potentially Inappropriate Uses of Compressed Air</td>
<td>23</td>
</tr>
<tr>
<td>3-Compressed Air System Leaks</td>
<td>27</td>
</tr>
<tr>
<td>4-Pressure Drop and Controlling System Pressure</td>
<td>31</td>
</tr>
<tr>
<td>5-Compressed Air System Controls</td>
<td>35</td>
</tr>
<tr>
<td>6-Compressed Air Storage</td>
<td>41</td>
</tr>
<tr>
<td>7-Proven Opportunities at the Component Level</td>
<td>47</td>
</tr>
<tr>
<td>8-Maintenance of Compressed Air Systems for Peak Performance</td>
<td>53</td>
</tr>
<tr>
<td>9-Heat Recovery and Compressed Air Systems</td>
<td>59</td>
</tr>
<tr>
<td>10-Baselining Compressed Air Systems</td>
<td>61</td>
</tr>
<tr>
<td>11-Determining Your Compressed Air System Analysis Needs</td>
<td>65</td>
</tr>
<tr>
<td>12-Compressed Air System Economics and Selling Projects to Management</td>
<td>69</td>
</tr>
<tr>
<td>Section 3: Where To Find Help</td>
<td>75</td>
</tr>
<tr>
<td>BestPractices</td>
<td>75</td>
</tr>
<tr>
<td>Compressed Air Challenge®</td>
<td>78</td>
</tr>
<tr>
<td>Directory of Contacts</td>
<td>80</td>
</tr>
<tr>
<td>Resources and Tools</td>
<td>81</td>
</tr>
<tr>
<td>Appendices</td>
<td>93</td>
</tr>
<tr>
<td>Appendix A: Glossary of Basic Compressed Air System Terminology</td>
<td>95</td>
</tr>
<tr>
<td>Appendix B: Packaged Compressor Efficiency Ratings</td>
<td>101</td>
</tr>
<tr>
<td>Appendix C: CAGI’s Compressor and Dryer Data Sheets</td>
<td>103</td>
</tr>
<tr>
<td>Appendix D: The Compressed Air System Marketplace</td>
<td>109</td>
</tr>
<tr>
<td>Appendix E: Guidelines for Selecting a Compressed Air System Provider</td>
<td>117</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1 Components of a Typical Compressed Air System 4
Figure 1.2 Compressor Family Tree 5
Figure 2.1 Performance Opportunities 18
Figure 2.2 Compressed Air System Block Diagram 20
Figure 2.3 Pressure Profile at a Single Point in Time 21
Figure 2.4 Pressure Profile over a Defined Time Period 22
Figure 2.5 Effect of Receiver Capacity on Lubricant-Injected Rotary Compressor with Load/Unload Capacity Control 43
Figure 2.6 Lubricant-Injected Rotary Compressor with Inlet Valve Modulation 43
Figure 2.7 Lubricant-Injected Rotary Screw Compressor Performance with Variable Displacement 44
Figure 2.8 Lubricant-Injected Rotary Screw Compressor Performance with Variable Speed Control 45

List of Tables

Table 1.1 Industrial Sector Uses of Compressed Air 15
Table 1.2 Non-Manufacturing Sector Use of Compressed Air 16

List of Appendices Figures

Compressor Data Sheet–Rotary Screw Compressors 104
Dryer Data Sheet–Refrigerant Dryers 105
Dryer Data Sheet–Regenerative Dessicant-Type Dryers 106
Dryer Data Sheet–Membrane-Type Dryers 107
Appendix D-1.1 The Air Compressor Marketplace 110
Quick-Start Guide

This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance. The sourcebook is divided into the three main sections outlined below.

Section 1. Introduction to Industrial Compressed Air Systems

This section is intended for readers who want to gain an understanding of the basics of industrial compressed air systems. The components of an industrial compressed air system are described and applications of compressed air systems in different industries are characterized. Compressed air system users already familiar with compressed air fundamentals may want to skip this section.

Section 2. Performance Improvement Opportunity Roadmap

This section consists of a series of fact sheets that outline specific opportunities for enhancing the performance of a compressed air system. The fact sheets address system-level opportunities such as using heat recovery and fixing leaks as well as individual component-level opportunities. The following fact sheets are included:

1—Analyzing Compressed Air Needs
2—Potentially Inappropriate Uses of Compressed Air
3—Compressed Air System Leaks
4—Pressure Drop and Controlling System Pressure
5—Compressed Air System Controls
6—Compressed Air Storage
7—Proven Opportunities at the Component Level
8—Maintenance of Compressed Air Systems for Peak Performance
9—Heat Recovery and Compressed Air Systems
10—Baselining Compressed Air Systems
11—Compressed Air System Assessments and Audits and Selecting a Service Provider
12—Compressed Air System Economics and Selling Projects to Management

Section 3. Where To Find Help

The third section of this sourcebook is a directory of resources, tools, and information that are available to compressed air systems users to help them improve their systems. It includes:

• A description of EERE’s BestPractices, a national effort sponsored by the U.S. Department of Energy aimed at improving the performance of industrial systems
• A description of the Compressed Air Challenge®, a national effort involving all compressed air market stakeholders aimed at increasing the demand for high performance compressed air systems, primarily through awareness building, education, and training
• A directory of association and other organization contacts involved in the compressed air system market
• A listing and description of compressed air system-related resources and tools, including books, brochures, periodicals, software, videos, workshops, and training courses.

Appendices

The sourcebook also contains five appendices. Appendix A is a glossary defining terms used in the compressed air industry. Appendix B contains information on Packaged Compressor Efficiency Ratings. Appendix C contains Data Sheets outlining a common format and style for reporting compressor and dryer performance. Appendix D presents an overview of the compressed air systems marketplace. Appendix E contains Guidelines for Selecting a Compressed Air System Service Provider, a document that offers guidance for selecting a firm to provide integrated services to improve compressed air system performance.
The Systems Approach

Improving and maintaining peak compressed air system performance requires not only addressing individual components, but also analyzing both the supply and demand sides of the system and how they interact. This practice is often referred to as taking a “systems approach” because the focus is shifted away from individual components to total system performance. Applying the systems approach usually involves the following types of interrelated actions:

- Establishing current conditions and operating parameters, including baselining of inefficiencies
- Determining present and future process production needs
- Gathering and analyzing operating data and developing load duty cycles
- Assessing alternative system designs and improvements
- Determining the most technically and economically sound options, taking into consideration all of the sub-systems
- Implementing those options
- Assessing operations and energy consumption and analyzing economics
- Continuing to monitor and optimize the system
- Continuing to operate and maintain the system for peak performance.
Section 1. Introduction to Industrial Compressed Air Systems

This section of the sourcebook is intended for readers who want to gain an understanding of the basics of industrial compressed air systems. A glossary of basic terminology is included in Appendix A for users unfamiliar with the terms used in this chapter.

Compressed air is used widely throughout industry and is often considered the “fourth utility” at many facilities. Almost every industrial plant, from a small machine shop to an immense pulp and paper mill, has some type of compressed air system. In many cases, the compressed air system is so vital that the facility cannot operate without it. Plant air compressor systems can vary in size from a small unit of 5 horsepower (hp) to huge systems with more than 50,000 hp.

In many industrial facilities, air compressors use more electricity than any other type of equipment. Inefficiencies in compressed air systems can therefore be significant. Energy savings from system improvements can range from 20 to 50 percent or more of electricity consumption. For many facilities this is equivalent to thousands, or even hundreds of thousands of dollars of potential annual savings, depending on use. A properly managed compressed air system can save energy, reduce maintenance, decrease downtime, increase production throughput, and improve product quality.

Compressed air systems consist of a supply side, which includes compressors and air treatment, and a demand side, which includes distribution and storage systems and end-use equipment. A properly managed supply side will result in clean, dry, stable air being delivered at the appropriate pressure in a dependable, cost-effective manner. A properly managed demand side minimizes wasted air and uses compressed air for appropriate applications. Improving and maintaining peak compressed air system performance requires addressing both the supply and demand sides of the system and how the two interact.

Components of an Industrial Compressed Air System

A compressor is a machine that is used to increase the pressure of a gas. The earliest compressors were bellows, used by blacksmiths to intensify the heat in their furnaces. The first industrial compressors were simple, reciprocating piston-driven machines powered by a water wheel.

A modern industrial compressed air system is composed of several major sub-systems and many sub-components. Major sub-systems include the compressor, prime mover, controls, treatment equipment and accessories, and the distribution system. The compressor is the mechanical device that takes in ambient air and increases its pressure. The prime mover powers the compressor. Controls serve to regulate the amount of compressed air being produced. The treatment equipment removes contaminants from the compressed air, and accessories keep the system operating properly. Distribution systems are analogous to wiring in the electrical world—they transport compressed air to where it is needed. Compressed air storage can also serve to improve system performance and efficiency. Figure 1.1 shows a representative industrial compressed air system and its components.

Compressor Types

Many modern industrial air compressors are sold “packaged” with the compressor, drive motor, and many of the accessories mounted on a frame for ease of installation. Provision for movement by forklift is common. Larger packages may require the use of an overhead crane. An enclosure may be included for sound attenuation and aesthetics.

As shown in Figure 1.2, there are two basic compressor types: positive-displacement and dynamic. In the positive-displacement type, a given quantity of air or gas is trapped in a compression chamber and the volume which it occupies is mechanically reduced, causing a corresponding rise in pressure prior to discharge. At constant speed, the air flow remains essentially constant with variations in discharge pressure. Dynamic compressors impart velocity energy to continuously flowing air or gas by means of impellers rotating at very high speeds. The velocity energy is changed into pressure energy both by the impellers and the discharge volutes or diffusers. In the centrifugal-type dynamic compressors, the shape of
Figure 1.1 Components of a Typical Industrial Compressed Air System.
the impeller blades determines the relationship between air flow and the pressure (or head) generated.

Positive-Displacement Compressors

These compressors are available in two types: reciprocating and rotary. Reciprocating compressors work like bicycle pumps. A piston, driven through a crankshaft and connecting rod by an electric motor, reduces the volume in the cylinder occupied by the air or gas, compressing it to a higher pressure. Single-acting compressors have a compression stroke in only one direction, while double-acting units provide a compression stroke as the piston moves in each direction. Large, industrial reciprocating air compressors are double-acting and water-cooled. Multi-stage, double-acting compressors are the most efficient compressors available, and are typically larger, noisier, and more costly than comparable rotary units. Reciprocating compressors are available in sizes from less than 1 hp to more than 600 hp.

Rotary compressors have gained popularity and are now the “workhorse” of American industry. They are most commonly used in sizes from about 30 to 200 hp. The most common type of rotary compressor is the helical-twin, screw-type (also known as rotary screw or helical-lobe). Male and female screw-rotors mesh, trapping air, and reducing the volume of the air along the rotors to the air discharge point. Rotary screw compressors have low initial cost, compact size, low weight, and are easy to maintain. Rotary screw compressors may be air- or water-cooled. Less common rotary compressors include sliding-vane, liquid-ring, and scroll-type.

Single-Acting, Reciprocating Air Compressors

This type of compressor is characterized by its “automotive” type piston driven through a connecting rod from the crankshaft. Compression takes place on the top side of the piston on each revolution of the crankshaft. Single-acting, reciprocating air compressors may be air-cooled or liquid-cooled. These may be single-stage, usually rated at discharge pressures from 25 to 125 pounds per square inch gauge (psig), or two-stage, usually rated at discharge pressures from 125 psig to 175 psig or higher.

The most common air compressor in the fractional and single-digit hp sizes is the air-cooled, reciprocating air compressor. In larger sizes, single-acting reciprocating compressors are available up to 150 hp, but above 25 hp are much less common. Two-stage and multi-stage designs include inter-stage cooling to reduce discharge air temperatures for improved efficiency and durability.
Pistons used in single-acting compressors are of the “automotive” or “full skirt” design, the underside of the piston being exposed to the crankcase. Lubricated versions have a combination of compression and lubricant-control piston rings, which seal the compression chamber, control the lubricant to the compression chamber, and act (in some designs) as support for piston movement on the cylinder walls.

Lubricant-free, or non-lube designs, do not allow lubricant in the compression chamber and use pistons of self-lubricating materials or use heat resistant, non-metallic guides and piston rings which, are self-lubricating. Some designs incorporate a distance piece or crosshead to isolate the crankcase from the compression chamber.

Lubricant-less designs have piston arrangements similar to lubricant-free versions but do not have lubricant in the crankcase. Generally these have a grease pre-packed crankshaft and connecting rod bearings.

Cooling. Single-acting air compressors have different arrangements for removing the heat of compression. Air-cooled versions have external finning for heat dissipation on the cylinder, cylinder head, and in some cases, the external heat exchanger. Air is drawn or blown across the fins and the compressor crankcase by a fan, which may be the spokes of the drive pulley/flywheel.

Liquid-cooled compressors have jacketed cylinders, heads and heat exchangers, through which liquid coolant is circulated to dissipate the heat of compression. Water, or an ethylene glycol mixture to prevent freezing, may be employed.

Drives. The most common drive arrangement is a belt drive from an electric motor. The compressor sheave also acts as a flywheel to limit torque pulsations and its spokes often are used for cooling air circulation. Belt drives allow a great degree of flexibility in obtaining the desired speed of rotation.

Flange-mounted, or direct-coupled motor drives provide compactness and minimum drive maintenance. Belts and couplings must be properly shielded for safety and to meet Occupational Safety & Health Administration (OSHA) requirements in industrial plants.

Double-Acting, Reciprocating Air Compressors

Double-acting reciprocating compressors use both sides of the piston for air compression, doubling the capacity for a given cylinder size. A piston rod is attached to the piston at one end and to a crosshead at the other end. The crosshead ensures that the piston travels concentrically within the cylinder. These compressors may be single- or multi-stage, depending on discharge pressure and hp size. These can range upwards from 10 hp and with pressures upwards from 50 psig.

Cooling. Double-acting air compressors generally have cooling water jackets around the cylinder body and in the cylinder head. This, combined with their relatively slow speed of operation and water-cooled intercooling, results in excellent compression efficiency.

Lubrication. Cylinder lubrication is generally by means of a forced-fed cylinder lubricator, with a feed rate of several drops per minute, depending on cylinder size and piston speed and as specified by the manufacturer. Lubricant-free versions also are available with polytetrafluoroethylene (PTFE) or similar materials for pistons, riders, and compression rings. A distance piece is provided between the crankcase and the cylinder(s) to ensure that no part of the piston rod, which enters the lubricated crankcase, can enter the lubricant-free cylinder area.

Balance. Single- and two-cylinder compressors of this type generally require a substantial foundation due to unbalanced reciprocating forces.

Drives. Below 200 hp, belt drives and flange-mounted induction motors are normally used. For motors larger than 300 hp, flange-mounted, synchronous motors are sometimes used with a 1.0 power factor or 0.8 leading power factor to provide power factor correction to offset other induction-type electrical loads.

Lubricant-Injected Rotary Screw Compressors

The lubricant-injected rotary screw compressor powered by an electric motor has become a dominant type of industrial compressor for a wide variety of applications.

Compression Principle. The lubricant-injected, rotary-screw compressor consists of two intermeshing rotors in a stator housing having an inlet port at one end and a discharge port at the other. The male rotor has lobes formed helically along its length while the female rotor has corresponding helical grooves or flutes. The number of helical lobes and grooves may vary in otherwise similar designs.

Air flowing in through the inlet port fills the spaces between the lobes on each rotor. Rotation then causes the air to be trapped between the lobes and the stator as the inter-lobe spaces pass beyond the inlet port. As rotation continues, a lobe on one rotor rolls
into a groove on the other rotor and the point of intermeshing moves progressively along the axial length of the rotors, reducing the space occupied by the air, resulting in increased pressure. Compression continues until the inter-lobe spaces are exposed to the discharge port when the compressed air is discharged.

Lubricant is injected into the compression chamber during compression and serves three basic functions: 1) it lubricates the intermeshing rotors and associated bearings; 2) it takes away most of the heat caused by compression; and 3) it acts as a seal in the clearances between the meshing rotors and between rotors and stator.

Lubrication. The generic term “lubricant” has been used instead of oil. The lubricant may be a hydrocarbon product, but most compressors now use cleaner and longer life synthetic lubricants, including diesters, polyglycols, polyalphaolefins, polyol esters, and silicon-based lubricants. These newer products are suitable for a wider range of temperatures.

A mixture of compressed air and injected lubricant leaves the air end and is passed to a sump/separator where the lubricant is removed from the compressed air. Directional and velocity changes are used to separate most of the liquid. The remaining aerosols in the compressed air then are separated by means of a coalescing filter, resulting in only a few parts per million (ppm) of lubricant carry-over (usually in the range of 2 to 5 ppm). A minimum pressure device, often combined with a discharge check valve, prevents excessive velocities through the separator element until a normal system pressure is achieved at start-up. Most lubricant-injected rotary screw compressor packages use the air pressure in the lubricant sump/separator, after the discharge of the air end, to circulate the lubricant through a filter and cooler prior to reinjection to the compression chamber. Some designs may use a lubricant pump.

Multi-stage compressors. Multi-stage compressors may have the individual stages mounted side by side, either in separate stators or within a common, multibore stator housing. Alternatively, the stages may be mounted in tandem with the second stage driven directly from the rear of the first stage. Multiple stages are used either for improved efficiency at a given pressure or to achieve higher pressures.

Cooling. The temperature of the lubricant injected into the compression chamber is generally controlled directly to a minimum of 140°F, or indirectly by controlling the discharge temperature. A thermostatic bypass valve allows some or all of the lubricant being circulated to bypass the lubricant cooler to maintain the desired temperature over a wide range of ambient temperatures.

Generally, suitable lubricant temperature and viscosity are required for proper lubrication, sealing, and to avoid condensation in the lubricant sump. It also is necessary to avoid excessive temperatures, which could result in a breakdown of the lubricant and reduced life.

In addition to lubricant cooling, an aftercooler is used to cool the discharged air and a moisture separator removes the condensate. In the majority of applications, air-cooled, radiator-type lubricants and air coolers are employed and provide the opportunity for heat recovery from the compression process for facility heating. In water-cooled designs, water-cooled heat exchangers with water control valves also are available on most rotary screw compressor packages.

In multi-stage designs, lubricant may be removed and air-cooled between the stages in an intercooler, or the air/lubricant mixture may pass through a curtain of lubricant as it enters the next stage.

Single-stage, lubricant-injected, rotary screw compressor packages are available from 3 to 900 hp, or 8 to 5000 cubic feet per minute (cfm), with discharge pressures from 50 to 250 psig. Two-stage versions can reduce specific power and some can achieve discharge pressures up to 500 psig. Lubricant-injected, rotary screw vacuum pumps also are available from 80 to 3,100 inlet cfm and vacuum to 29.7 inches Hg. Lubricant-injected, rotary-vane compressors are a less common type of rotary compressor and are available in a limited size range.

Lubricant-Free Rotary Screw Compressors

The principle of compression in lubricant-free rotary screw compressors is similar to that of the lubricant-injected rotary screw compressors but, without lubricant being introduced into the compression chamber. Two distinct types are available: the dry-type and the water-injected type.

In the dry-type, the intermeshing rotors are not allowed to touch and their relative positions are maintained by means of lubricated timing gears external to the compression chamber. Since there is no injected fluid to remove the heat of compression, most designs use two stages of compression with an intercooler between the stages and an aftercooler after the second...
stage. The lack of a sealing fluid also requires higher rotation speeds than for the lubricant-injected type. Dry-type, lubricant-free rotary screw compressors have a range from 25 to 4,000 hp or 90 to 20,000 cfm. Single-stage units operate up to 50 psig, while two-stage can achieve up to 150 psig.

In the water-injected type, similar timing gear construction is used, but water is injected into the compression chamber to act as a seal in internal clearances and to remove the heat of compression. This allows pressures in the 100 to 150 psig range to be accomplished with only one stage. The injected water, together with condensed moisture from the atmosphere, is removed from the discharged compressed air by a conventional moisture separation device. Similar to the lubricant-injected type, lubricant-free rotary screw compressors generally are packaged with all necessary accessories.

Lubrication. Lubricant-free rotary screw compressors utilize lubricant for bearings and gears, which are isolated from the compression chamber. The lubricant also may be used for stator jacket cooling in air-cooled units. Typically, a lubricant pump is directly driven from a shaft in the gearbox, assuring lubricant flow immediately at start-up and during run-down in the event of power failure. A lubricant filter, typically with 10 micron rating, protects bearings, gears, and the lubricant pump from damage.

Cooling. The cooling system for the dry-type, lubricant-free rotary screw compressor normally consists of an air cooler after each stage and a lubricant cooler. These may be water-cooled or air-cooled, radiator-type. Some older two-stage designs also employ an additional heat exchanger to cool a small portion of the compressed air for recycling to the compressor inlet during the unloaded period.

Dynamic Compressors

These compressors raise the pressure of air or gas by imparting velocity energy and converting it to pressure energy. Dynamic compressors include centrifugal and axial types. The centrifugal-type is the most common and is widely used for industrial compressed air. Each impeller, rotating at high speed, imparts primarily radial flow to the air or gas which then passes through a volute or diffuser to convert the residual velocity energy to pressure energy. Some large manufacturing plants use centrifugal compressors for general plant air, and in some cases, plants use other compressor types to accommodate demand load swings while the centrifugal compressors handle the base load.

Axial compressors consist of a rotor with multiple rows of blades and a matching stator with rows of stationary vanes. The rotating blades impart velocity energy, primarily in an axial plane. The stationary vanes then act as a diffuser to convert the residual velocity energy into pressure energy. This type of compressor is restricted to very high flow capacities and generally has a relatively high compression efficiency. Mixed flow compressors have impellers and rotors which combine the characteristics of both axial and centrifugal compressors.

Centrifugal Air Compressors

A centrifugal air compressor has a continuously flowing air stream which has velocity energy, or kinetic energy, imparted to it by an impeller, or impellers, which rotate at speeds that can exceed 50,000 revolutions per minute (rpm). Approximately one half of the pressure energy is developed in the impeller with the other half achieved by converting the velocity energy to pressure energy as the air speed is reduced in a diffuser and volute. The most common centrifugal air compressor is one with two to four stages for pressures in the 100 to 150 psig range. A water-cooled intercooler and separator between each stage returns the air temperature to approximately ambient temperature and removes condensed moisture before entering the next stage. An aftercooler cools the air from the final stage and a moisture separator removes the moisture prior to air delivery to distribution.

The inherent characteristic of centrifugal air compressors is that as system pressure decreases, the compressor’s flow capacity increases. The steepness of the pressure head/capacity curve is dependent upon the impeller design. The more the impeller blades lean backwards from the true radial position, the steeper the curve.

Most standard centrifugal air compressor packages are designed for an ambient temperature of 95°F and near sea level barometer pressure. The dynamic nature of the centrifugal compressor results in the pressure head generated by each impeller increasing as the air density increases. The compressor mass flow and actual cubic feet per minute (acfm) capacity at a given discharge pressure increases as the ambient temperature decreases. Typically, a capacity control system is
provided with the compressor to maintain the desired capacity and to operate within the motor horsepower limits. The control system regulates the air flow by means of an inlet throttle valve or inlet guide vanes. The amount of reduction in the flow rate is limited by a minimum point flow reversal phenomenon known as surge. Control systems either unload the compressor or blow off the excess air to atmosphere to avoid this occurrence, which could result in excessive vibration and potential damage to the compressor. Given adequate storage, some manufacturers will operate the compressor controls in a load/unload mode at lower flow conditions.

Centrifugal air compressors range from around 300 to more than 100,000 cfm but the more common air compressors are from 1,200 to 5,000 cfm and with discharge pressures up to 125 psig. These may have several impellers in line on a single shaft or with separate impellers integrally geared.

Centrifugal air compressors provide lubricant-free air delivery as there is no lubricant in the compression chambers. Lubrication for speed increasing gears and the special high-speed shaft bearings is kept away from the compression chambers by means of shaft seals, which may also have air purge and vent connections.

Centrifugal air compressors are high-speed rotating machines and as such, shaft vibration monitoring is mandated to record operational trends and protect the equipment. Automatic control of the compressors is typical and has been greatly improved by the use of microprocessors, which monitor the pressure/capacity/temperature characteristics as well as main-drive motor current draw. It is important that the manufacturer’s recommended maintenance procedures be followed and that certain maintenance procedures be carried out by qualified staff. This is particularly true of attempts to remove an impeller from its shaft, since special procedures and tools may be involved.

Lubrication and Lubrication Systems. Centrifugal compressors use a pressure lubrication system for bearings and drive gears. The main lubricant pump may be driven from the gearbox input shaft with an electric motor-driven auxiliary lubricant pump for pre-lubrication prior to start-up and for post-lubrication during a cool down period. A water-cooled lubricant cooler is also included.

Because of the high rotation speeds, some designs use a high-pressure lubricant supply to the special bearings involved. The manufacturer’s recommended lubricant should be used and changed at the specified intervals.

Compressor Prime Movers

The prime mover is the main power source providing energy to drive the compressor. The prime mover must provide enough power to start the compressor, accelerate it to full speed, and keep the unit operating under various design conditions. This power can be provided by any one of the following sources: electric motors, diesel or natural gas engines, steam turbines and combustion turbines. Electric motors are by far the most common type of prime mover.

Electric motors are a widely available and economical means of providing reliable and efficient power to compressors. Most compressors use standard, polyphase induction motors. In many cases, either a standard- or a premium-efficient motor can be specified when purchasing a compressor or replacement motor. The incremental cost of the premium efficient motor is typically recovered in a very short time from the resulting energy savings. When replacing a standard motor with a premium-efficient version, careful attention should be paid to performance parameters, such as full-load speed and torque. A replacement motor with performance as close as possible to the original motor should be used. When replacing a drive motor in a compressor that uses a variable frequency drive as part of the control system, use an inverter-duty motor.

Diesel or natural gas engines are common compressor power sources in the oil and gas industries. Considerations such as convenience, cost, and the availability of liquid fuel and natural gas play a role in selecting an engine to power a compressor. Although the majority of industrial compressed air systems use electric motors for prime movers, in recent years there has been renewed interest in using non-electric drives, such as reciprocating engines powered by natural gas, particularly in regions with high electricity rates. Standby or emergency compressors may also be engine-driven to allow operation in the event of a loss of electrical power. Maintenance costs for engine-driven systems are significantly higher than those that use electric motors.

The oldest method of driving compressors is through the use of a steam engine or turbine. In general, however, it is not economical to use a steam engine or turbine unless the steam is inexpensively and readily available within the plant for use as a power source.

Compressed Air System Controls

Compressed air system controls serve to match compressor supply with system demand. Proper
compressor control is essential to efficient operation and high performance. Because compressor systems are typically sized to meet a system's maximum demand, a control system is almost always needed to reduce the output of the compressor during times of lower demand. Compressor controls are typically included in the compressor package, and many manufacturers offer more than one type of control technology. Systems with multiple compressors use more sophisticated controls (network or system master controls) to orchestrate compressor operation and air delivery to the system.

Network controls use the on-board compressor controls' microprocessors linked together to form a chain of communication that makes decisions to stop/start, load/unload, modulate, vary displacement, and vary speed. Usually, one compressor assumes the lead with the others being subordinate to the commands from this compressor.

System master controls coordinate all of the functions necessary to optimize compressed air as a utility. System master controls have many functional capabilities, including the ability to monitor and control all components in the system, as well as trending data, to enhance maintenance functions and minimize costs of operation. Other system controllers, such as pressure/flow controllers, can also improve the performance of some systems.

The type of control system specified for a given system is largely determined by the type of compressor being used and the facility's demand profile. If a system has a single compressor with a very steady demand, a simple control system may be appropriate. On the other hand, a complex system with multiple compressors, varying demand, and many types of end uses will require a more sophisticated control strategy. In any case, careful consideration should be given to compressor system control selection because it can be the most important single factor affecting system performance and efficiency. For information about efficiency and compressor controls, see the fact sheet titled Compressed Air System Controls in Section 2.

Accessories

Accessories are the various types of equipment used to treat compressed air by removing contaminants such as dirt, lubricant, and water; to keep compressed air systems running smoothly; and to deliver the proper pressure and quantity of air throughout the system. Accessories include compressor aftercoolers, filters, separators, dryers, heat recovery equipment, lubricators, pressure regulators, air receivers, traps, and automatic drains.

Air Inlet Filters. An air inlet filter protects the compressor from atmospheric airborne particles. Further filtration is typically needed to protect equipment downstream of the compressor.

Compressor Cooling. Air or gas compression generates heat. As a result, industrial air compressors that operate continuously generate substantial amounts of heat. Compressor units are cooled with air, water, and/or lubricant. Single-acting reciprocating compressors are typically air-cooled using a fan, which is an integral part of the belt-drive flywheel. Cooling air blows across finned surfaces on the outside of the compressor cylinder's cooler tubes. Larger, water-cooled, double-acting reciprocating air compressors have built-in cooling water jackets around the cylinders and in the cylinder heads. The temperature of the inlet water and the design and cleanliness of the cooler can affect overall system performance and efficiency. Centrifugal compressors are generally water-cooled.

Lubricant-injected rotary compressors use the injected lubricant to remove most of the heat of compression. In air-cooled compressors, a radiator-type lubricant cooler is used to cool the lubricant before it is reinjected. The cooling fan may be driven from the main motor-drive shaft or by a small auxiliary electric motor. In plants where good quality water is available, shell and tube heat exchangers generally are used.

Intercooling. Most multi-stage compressors use intercoolers, which are heat exchangers that remove the heat of compression between the stages of compression. Intercooling affects the overall efficiency of the machine.

Aftercoolers. As mechanical energy is applied to a gas for compression, the temperature of the gas increases. Aftercoolers are installed after the final stage of compression to reduce the air temperature. As the air temperature is reduced, water vapor in the air is condensed, separated, collected, and drained from the system. Most of the condensate from a compressor with intercooling is removed in the intercooler(s), and the remainder in the aftercooler. Almost all industrial systems, except those that supply process air to heat-indifferent operations require aftercooling. In some systems, aftercoolers are an integral part of the compressor package, while in other systems the aftercooler is a separate piece of equipment. Some systems have both.
Separators. Separators are devices that separate liquids entrained in the air or gas. A separator generally is installed following each intercooler or aftercooler to remove the condensed moisture. This involves changes in direction and velocity and may include impingement baffles. Lubricant-injected rotary compressors have an air/lubricant coalescing separator immediately after the compressor discharge to separate the injected lubricant before it is cooled and recirculated to the compressor. This separation must take place before cooling to prevent condensed moisture from being entrained in the lubricant.

Dryers. When air leaves an aftercooler and moisture separator, it is typically saturated. Any further radiant cooling as it passes through the distribution piping, which may be exposed to colder temperatures, will cause further condensation of moisture with detrimental effects, such as corrosion and contamination of point-of-use processes. This problem can be avoided by the proper use of compressed air dryers.

Atmospheric air contains moisture. The higher the air temperature, the more moisture the air is capable of holding. The term “relative humidity” is commonly used to describe the moisture content although technically, the correct term is “relative vapor pressure,” the air and the water vapor being considered as gases. When the air contains all the moisture possible under the prevailing conditions, it is called “saturated.” Air at 80 percent relative humidity would contain 80 percent of the maximum possible.

When air is cooled, it will reach a temperature at which the amount of moisture present can no longer be contained and some of the moisture will condense and drop out. The temperature at which the moisture condenses is called the dew point. In general, reducing the temperature of saturated compressed air by 20°F will reduce the moisture content by approximately 50 percent.

When air is compressed and occupies a smaller volume, it can no longer contain all of the moisture possible at atmospheric conditions. Again, some of the moisture will drop out as liquid condensate. The result of both of these situations is a difference between the dew point at atmospheric conditions and the dew point at higher pressures. Drying compressed air beyond the required pressure dew point will result in unnecessary energy and costs.

Different types of compressed air dryers have different operating characteristics and degrees of dew point suppression. Dryer ratings usually are based on standard dryer inlet conditions, commonly referred to as “the three 100s.” That is, 100 psig, 100°F (inlet compressed air temperature), and 100°F ambient temperature. Deviations from these conditions will affect the capacity of a dryer. An increase in inlet temperature or a decrease in inlet pressure will reduce the dryer’s rated capacity. Most manufacturers provide correction factors for this.

The most common types of dryers are discussed below.

- The refrigerant dryer is the most commonly used dryer in the industry, having relatively low initial and operating costs. Refrigerant-type air dryers (cycling and non-cycling) are not recommended for operation in sub-freezing ambient temperatures. The moisture in the compressed air can freeze and damage the dryer. Most refrigerated dryers are equipped with a precooler/reheater that reheats the dried compressed air with an air-to-air heat exchanger using the hot incoming air. This lowers the temperature of the incoming air before it passes through the refrigerant/thermal mass-to-air heat exchanger, reducing the heat load on the refrigerant system. Reheating the dried air prevents condensation on the outside of the compressed air piping in warm humid environments. The refrigerated dryer lowers the dew point of the air to the approximate temperature of the air exiting the refrigerant evaporator. To avoid freezing, the evaporator temperature should not go below 32°F. Allowing for separator efficiency, an air pressure dew point of 35°F or higher for air leaving the dryer, can usually be obtained.

Cycling dryers cool compressed air indirectly through a thermal storage medium (heat sink, thermal mass, chilled media, etc.) while non-cycling dryers directly cool compressed air in a refrigerant to air heat exchanger. Refrigerant-type cycling dryers are controlled with one or two thermostats to shut off the refrigerant compressor when it is not needed, and a thermal storage medium (sometimes referred to as heat sink, chilled media or thermal mass) prevents rapid cycling of the refrigerant compressor(s). Powdered metal, glycol and water, sand, steel, and aluminum have all been used as this thermal storage medium. The ideal characteristics of this medium would be high specific heat (effective
storage), high coefficient of heat transfer (easy transfer of stored cooling), freezing below 0°F, corrosion protected and low cost. The quantity of medium required is determined by the temperature band of the controlling thermostat(s) and the refrigerant capacity to be stored.

Refrigerant-type, non-cycling dryers cool the air in a refrigerant-to-air heat exchanger. The cooling effect is from the evaporation of a liquid refrigerant causing moisture in the air to condense. The moisture then is removed and drained by a separator and drain. The temperature of the air leaving the refrigerant evaporator is controlled by a hot gas bypass valve.

- Regenerative-desiccant-type dryers use a porous desiccant that adsorbs the moisture by collecting it in its myriad pores, allowing large quantities of water to be retained by a relatively small quantity of desiccant. Desiccant types include silica gel, activated alumina, and molecular sieves. Use only the type specified by the manufacturer. In some cases, more than one desiccant type can be used for special drying applications. In most of these cases, a larger particle size (1/4 inch or more) is used as a buffer zone at the inlet, while a smaller particle size desiccant (1/8 to 1/4 inch) is used for final drying. Where very low dewpoints are required, molecular sieve desiccant is added as the final drying agent.

Normally, the desiccant is contained in two separate towers. Compressed air to be dried flows through one tower, while the desiccant in the other is being regenerated. Regeneration is accomplished by reducing the pressure in the tower and passing previously dried purge air through the desiccant bed. The purge air may also be heated, either with in the dryer or externally, to reduce the amount of purge air required. Purge air may also be supplied by a blower. Dryers of this type normally have a built-in regeneration cycle, which can be based upon time, dew point, or a combination of the two.

- Deliquescent-type dryers use a drying medium that absorbs, rather than adsorbs, the moisture in the compressed air. This means that the desiccant medium is used up as it changes from solid to liquid and cannot be regenerated. The most common deliquescent chemicals for compressed air drying are salts of sodium, potassium, calcium, and those with a urea base. Various compounds of these have been developed and sold under a variety of trade names.

- Heat-of-compression dryers are regenerative-desiccant dryers that use the heat generated during compression to accomplish desiccant regeneration, so they can be considered as heat reactivated. There are two types: the single-vessel and the twin-tower.

The single-vessel, heat-of-compression dryer provides continuous drying with no cycling or switching of towers. This is accomplished with a rotating desiccant drum in a single pressure vessel divided into two separate air streams. One air stream is a portion of the hot air taken directly from the air compressor at its discharge, prior to the aftercooler, and is the source of heated purge air for regeneration of the desiccant bed. The second air stream is the remainder of the air discharged from the air compressor after it passes through the air aftercooler. This air passes through the drying section of the dryer's rotating desiccant bed, where it is dried. The hot air, after being used for regeneration, passes through a regeneration cooler before being combined with the main air stream by means of an ejector nozzle before entering the dryer.

The twin-tower, heat-of-compression dryer operation is similar to other twin-tower, heat-activated, regenerative-desiccant dryers. The difference is that the desiccant in the saturated tower is regenerated by means of the heat of compression in all of the hot air leaving the discharge of the air compressor. The total air flow then passes through the air aftercooler before entering the drying tower. Towers are cycled as for other regenerative-desiccant dryers.

The heat-of-compression dryers require air from the compressor at a sufficiently high temperature to accomplish regeneration. For this reason, it is used almost exclusively with centrifugal or lubricant-free rotary screw compressors.

- Membrane technology dryers have advanced considerably in recent years. Membranes commonly are used for gas separation, such as in nitrogen production for food storage and other applications. The structure of the membrane allows molecules of certain gases (such as oxygen) to pass through (permeate) a semi-permeable membrane faster than others (such as nitrogen), leaving a concentration of the desired gas (nitrogen) at the outlet of the generator. When used as a dryer in a compressed air system, specially designed membranes allow water vapor (a gas) to pass through the membrane pores.
faster than the other gases (air) reducing the amount of water vapor in the air stream at the outlet of the membrane dryer, suppressing the dew point. The dew point achieved is usually 40°F but lower dew points to –40°F can be achieved at the expense of additional purge air loss.

Compressed Air Filters. Depending on the level of air purity required, different levels of filtration and types of filters are used. These include particulate filters to remove solid particles, coalescing filters to remove lubricant and moisture, and adsorbent filters for tastes and odors. A particulate filter is recommended after a desiccant-type dryer to remove desiccant “fines.” A coalescing-type filter is recommended before a desiccant-type dryer to prevent fouling of the desiccant bed. Additional filtration may also be needed to meet requirements for specific end uses.

Compressed air filters downstream of the air compressor are generally required for the removal of contaminants, such as particulates, condensate, and lubricant. Filtration only to the level required by each compressed air application will minimize pressure drop and resultant energy consumption. Elements should also be replaced as indicated by pressure differential to minimize pressure drop and energy consumption, and should be checked at least annually.

Heat Recovery. As noted earlier, compressing air generates heat. In fact, industrial-sized air compressors generate a substantial amount of heat that can be recovered and put to useful work. More than 80 percent of the electrical energy going to a compressor becomes available heat. Heat can be recovered and used for producing hot water or hot air. See the fact sheet in Section 2 titled Heat Recovery with Compressed Air Systems for more information on this energy-saving opportunity.

Lubrication. In lubricant-injected rotary screw compressors, lubricants are designed to cool, seal, and lubricate moving parts for enhanced performance and longer wear. Important considerations for compressor lubricants include proper application and compatibility with downstream equipment, including piping, hoses, and seals. A lubricator may be installed near a point-of-use to lubricate items such as pneumatic tools. The lubricator may be combined with a filter and a pressure regulator to make up what is commonly called a FRL (filter-regulator-lubricator). The lubricant should be that specified by the point-of-use equipment manufacturer.

Pressure/Flow Controllers. Pressure/flow controllers are optional system pressure controls used in conjunction with the individual compressor or system controls described previously. Their primary function is to stabilize system pressure separate from and more precisely than compressor controls. A pressure/flow controller does not directly control a compressor and is generally not included as part of a compressor package. A pressure/flow controller is a device that serves to separate the supply side of a compressor system from the demand side.

Air Receivers. Receivers are used to provide compressed air storage capacity to meet peak demand events and help control system pressure by controlling the rate of pressure change in a system. Receivers are especially effective for systems with widely varying compressed air flow requirements. Where peaks are intermittent, a large air receiver may allow a smaller air compressor to be used and can allow the capacity control system to operate more effectively and improve system efficiency. An air receiver after a reciprocating air compressor can provide dampening of pressure pulsations, radiant cooling, and collection of condensate. Demand-side control will optimize the benefit of the air receiver storage volume by stabilizing system header pressure and “flattening” the load peaks. Air receivers also play a crucial role in orchestrating system controls, providing the time needed to start or avoid starting standby air compressors.

Traps and Drains. Traps (sometimes called drains) allow the removal of condensate from the compressed air system. Automatic condensate traps are used to conserve energy by preventing the loss of air through open petcocks and valves. Poorly maintained traps can waste a lot of compressed air.

There are four methods to drain condensate.

1. **Manual.** Operators will manually open valves to discharge condensate. However, this is not automatic, and unfortunately, too often, manual valves are left open to drain condensate from moisture separators, intercoolers, refrigerated dryers, and filters, allowing compressed air to continually escape into the atmosphere.

2. **Level-operated mechanical traps.** Float-type traps do not waste air when operating properly, but they often require a great deal of maintenance and are prone to blockage from sediment in the condensate. Inverted bucket traps may require...
less maintenance but will waste compressed air if the condensate rate is inadequate to maintain the liquid level (or prime) in the trap.

3. Electrically operated solenoid valves. The solenoid-operated drain valve has a timing device that can be set to open for a specified time and at preset adjustable intervals. There are two issues with using these valves.

- The period during which the valve is open may not be long enough for adequate drainage of accumulated condensate.
- The valve will operate even if little or no condensate is present, resulting in the loss of valuable compressed air. Level-operated and electrically operated solenoid valves should have strainers installed to reduce contaminants, which block the inlet and discharge ports of these automatic devices.

Motorized ball valves are also used with programmable timers. However, while fairly reliable, these valves can be even more wasteful as the duration of the valve opening is dependent on the valve actuator and is not adjustable.

4. Zero air-loss traps with reservoirs. There are various types of zero air-loss traps.

- A float or level sensor operates an electric solenoid or ball valve and maintains the condensate level in the reservoir below the high-level point.
- A float activates a pneumatic signal to an air cylinder to open a ball valve through a linkage to expel the condensate in the reservoir to the low-level point.

Be sure to drain the reservoir often to prevent the accumulation of contaminants, which could foul the mechanisms of these traps.

The potential for freezing must be considered and provision made for heated drains where necessary. The relatively common practice of leaving a manual drain valve cracked open should not be tolerated because it wastes costly compressed air.

Contaminated condensate requires removal of lubricant before the condensate is discharged to a sewer system. It is recommended that the local sewage authority be consulted for allowable contamination levels.

Air Distribution Systems. The air distribution system links the various components of the compressed air system to deliver air to the points-of-use with minimal pressure loss. The specific configuration of a distribution system depends on the needs of the individual plant, but frequently consists of an extended network of main lines, branch lines, valves, and air hoses. The length of the network should be kept to a minimum to reduce pressure drop. Air distribution piping should be large enough in diameter to minimize pressure drop. A loop system is generally recommended, with all piping sloped to accessible drop legs and drain points.

When designing an air distribution system layout, it is best to place the air compressor and its related accessories where temperature inside the plant is the lowest (but not below freezing). A projection of future demands and tie-ins to the existing distribution system should also be considered. Air leaks are an important issue with distribution system and are addressed in the fact sheet in Section 2 titled *Compressed Air System Leaks.* It is important to note that the majority of system leakage will be at the point of use and not in the distribution piping.

Headers should have a slight slope to allow drainage of condensate and drop legs from the bottom side of the header should be provided to allow collection and drainage of the condensate. The direction of the slope should be away from the compressor.

Piping from the header to points-of-use should connect to the top or side of the header to avoid being filled with condensate. Drainage-drop legs from the bottom of the header should be installed to collect the condensate.

Uses of Compressed Air

Industrial facilities use compressed air for a multitude of operations. Almost every industrial facility has at least two compressors, and in a medium-sized plant there may be hundreds of different uses of compressed air.

Uses include powering pneumatic tools, packaging and automation equipment, and conveyors. Pneumatic tools tend to be smaller, lighter, and more maneuverable than electric motor-driven tools. They also deliver smooth power and are not damaged by overloading. Air-powered tools have the capability for infinitely variable speed and torque control, and can reach a desired speed and torque very quickly. In addition, they are often selected for safety reasons because they
do not produce sparks and have low heat build-up. Although they have many advantages, pneumatic tools are generally much less energy-efficient than electric tools. Many manufacturing industries also use compressed air and gas for combustion and process operations such as oxidation, fractionation, cryogenics, refrigeration, filtration, dehydration, and aeration. Table 1.1 lists some major manufacturing industries and the tools, conveying, and process operations requiring compressed air. For some of these applications, however, other sources of power may be more cost effective (see the fact sheet titled *Potentially Inappropriate Uses of Compressed Air* in Section 2).

Compressed air also plays a vital role in many non-manufacturing sectors, including the transportation, construction, mining, agriculture, recreation, and service industries. Examples of some of these applications are shown in Table 1.2.

Table 1.1 Industrial Sector Uses of Compressed Air

<table>
<thead>
<tr>
<th>Industry</th>
<th>Example Compressed Air Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparel</td>
<td>Conveying, clamping, tool powering, controls and actuators, automated equipment</td>
</tr>
<tr>
<td>Automotive</td>
<td>Tool powering, stamping, control and actuators, forming, conveying</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Conveying, controls and actuators</td>
</tr>
<tr>
<td>Food</td>
<td>Dehydration, bottling, controls and actuators, conveying, spraying coatings, cleaning, vacuum packing</td>
</tr>
<tr>
<td>Furniture</td>
<td>Air piston powering, tool powering, clamping, spraying, controls and actuators</td>
</tr>
<tr>
<td>General Manufacturing</td>
<td>Clamping, stamping, tool powering and cleaning, control and actuators</td>
</tr>
<tr>
<td>Lumber and Wood</td>
<td>Sawing, hoisting, clamping, pressure treatment, controls and actuators</td>
</tr>
<tr>
<td>Metals Fabrication</td>
<td>Assembly station powering, tool powering, controls and actuators, injection molding, spraying</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Process gas compressing, controls and actuators</td>
</tr>
<tr>
<td>Primary Metals</td>
<td>Vacuum melting, controls and actuators, hoisting</td>
</tr>
<tr>
<td>Pulp and Paper</td>
<td>Conveying, controls and actuators</td>
</tr>
<tr>
<td>Rubber and Plastics</td>
<td>Tool powering, clamping, controls and actuators, forming, mold press powering, injection molding</td>
</tr>
<tr>
<td>Stone, Clay, and Glass</td>
<td>Conveying, blending, mixing, controls and actuators, glass blowing and molding, cooling</td>
</tr>
<tr>
<td>Textiles</td>
<td>Agitating liquids, clamping, conveying, automated equipment, controls and actuators, loom jet weaving, spinning, texturizing</td>
</tr>
</tbody>
</table>
Table 1.2 Non-Manufacturing Sector Use of Compressed Air

<table>
<thead>
<tr>
<th>Sector</th>
<th>Example Compressed Air Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>Farm equipment, materials handling, spraying of crops, dairy machines</td>
</tr>
<tr>
<td>Mining</td>
<td>Pneumatic tools, hoists, pumps, controls and actuators</td>
</tr>
<tr>
<td>Power Generation</td>
<td>Starting gas turbines, automatic control, emissions controls</td>
</tr>
<tr>
<td>Recreation</td>
<td>Amusement parks - air brakes</td>
</tr>
<tr>
<td></td>
<td>Golf courses - seeding, fertilizing, sprinkler systems</td>
</tr>
<tr>
<td></td>
<td>Hotels - elevators, sewage disposal</td>
</tr>
<tr>
<td></td>
<td>Ski resorts - snow making</td>
</tr>
<tr>
<td></td>
<td>Theaters - projector cleaning</td>
</tr>
<tr>
<td></td>
<td>Underwater exploration - air tanks</td>
</tr>
<tr>
<td>Service Industries</td>
<td>Pneumatic tools, hoists, air brake systems, garment pressing machines, hospital respiration systems, climate control</td>
</tr>
<tr>
<td>Transportation</td>
<td>Pneumatic tools, hoists, air brake systems</td>
</tr>
<tr>
<td>Wastewater Treatment</td>
<td>Vacuum filters, conveying</td>
</tr>
</tbody>
</table>